65 research outputs found

    Delay in presentation of symptomatic referrals to a breast clinic: patient and system factors

    Get PDF
    We attempted to identify factors associated with delay in presentation and assessment of women with breast symptoms who attended a London breast clinic. A total of 692 consecutive symptomatic referrals, aged 40–75 years, were studied. Patient delay, assessed prior to diagnosis, was defined as time elapsing between symptom discovery and first presentation to a medical provider. This was studied in relation to: reasons for delaying, beliefs and attitudes, socio-demographic and clinical variables, psychiatric morbidity and subsequent diagnosis. Thirty-five per cent of the cohort delayed presentation 4 weeks or more (median 13 days). The most common reason given was that they thought their symptom was not serious (odds ratio (OR) = 5.32, 95% confidence interval (CI) 3.6–8.0). Others thought their symptom would go away (OR = 3.73, 95% CI 2.2–6.4) or delayed because they were scared (OR = 4.61, 95% CI 2.1–10.0). Delay was associated with psychiatric morbidity but not age. Patients who turned out to have cancer tended to delay less (median 7 days) but not significantly. Median system delay – time between first medical consultation and first clinic visit – was 18 days. Patients who thought they had cancer and those so diagnosed were seen more promptly (median 14 days). Most factors, including socio-economic status and ethnicity were non-contributory. Beliefs about breast symptoms and their attribution are the most important factors determining when women present. Health education messages should aim to convince symptomatic women that their condition requires urgent evaluation, without engendering fear in them. © 2000 Cancer Research Campaig

    SAMPLE III SC.02 - Studying, sAmpling and Measuring of aircraft ParticuLate Emissions III: Specific Contract 02

    Get PDF
    The objectives of this specific contract were: - to provide support to the SAE E-31 in drafting the Aerospace Recommended Practice (ARP) on the measurement of aircraft engine non-volatile particulate matter (nvPM) mass and number emissions; and - to improve the sampling system that was manufactured during SAMPLE III SC.01 according to the preliminary specifications of the draft ARP, to assess its operating parameters at the SR Technics engine testing facility in Zürich and to perform a comparison with the sampling line installed at this facility. In order to deliver the aforementioned objectives numerous design, experimental and desk based studies were performed: - coordination of and contribution to SAE E-31 meetings and teleconferences; - manufacture of a sampling system to allow remote operation and monitoring and simultaneous sampling within SR Technics test cell; and - conduct numerous piggy back and dedicated engine test campaigns at SR Technics

    Impact of fuel hydrogen content on non-volatile particulate matter emitted from an aircraft auxiliary power unit measured with standardised reference systems

    Get PDF
    © 2020 Replacement of conventional petroleum jet fuel with sustainable aviation fuels (SAFs) can significantly reduce non-volatile Particulate Matter (nvPM) emissions from aircraft main engines and auxiliary power units (APUs). As part of the Initiative Towards sustAinable Kerosene for Aviation (ITAKA) project, the impact of fuel hydrogen content on nvPM number and mass emissions and particle size distributions were investigated using a GTCP85 APU burning blends of conventional (Jet A-1) and Hydrotreated Esters and Fatty Acids (HEFA)-derived (Used Cooking Oil and Camelina) aviation fuels. The measurements were conducted during two separate test campaigns performed three years apart, each employing a different regulatory compliant sampling and measurement reference system for aircraft engine nvPM emissions. The objective was to investigate the correlation of fuel hydrogen content with nvPM number and mass emissions at the engine exit plane (EEP) independent of fuel composition, measurement system, and ambient conditions. The nvPM number and mass emissions and size distributions systematically decreased with increasing fuel hydrogen content regardless of the fuel composition or APU operating condition. The measured nvPM emissions were particle loss-corrected to the EEP and normalised to a common fuel hydrogen content. Similar rates of nvPM reductions were observed for both test campaigns at all investigated APU operating conditions, confirming that engine exit nvPM reductions correlate with fuel hydrogen content for fuels of relatively similar compositions. This analysis method can be applied to emissions data from other engine types to compare the reduction in nvPM emissions for sustainable aviation fuels and blends

    Lewis number effects on lean premixed combustion characteristics of multi-component fuel blends

    Get PDF
    Variation in natural gas composition, alongside the potential for H2 enrichment, creates the potential for significant changes to premixed flame behaviour. To strengthen fundamental understanding of lean multi-component alternative fuel blends, an outwardly propagating spherical flame was employed to measure the flame speeds and Markstein lengths of C1single bondC4 hydrocarbons, alongside precisely mixed blends of CH4/C2H6, CH4/C3H8 and CH4/H2. Theoretical relationships between Markstein length and Lewis Number are explored alongside effective Lewis number formulations. Under lean conditions, equal volumetric additions of H2 and C3H8 (30% vol.) to CH4 resulted in similar augmentation of burning velocity, however, opposite susceptibility to preferential diffusional instability was noted. At a fixed equivalence ratio of 0.65, limited changes in composition provide a marked change in the premixed flame response with the addition of C2H6 and C3H8 to CH4. For lean CH4/H2 mixtures, a diffusional based Lewis Number formulation yielded a favourable correlation, whilst a heat-release model resulted in better agreement for lean CH4/C3H8 blends. Modelling work suggests that measured enhancement of lean CH4 flames upon H2 or C3H8 is strongly correlated to changes in volumetric heat release rates and production of H radicals. Furthermore, a systematic analysis of the flame speed enhancement effects (thermal, kinetic, diffusive) of H2 and C3H8 addition to methane was undertaken. Augmented flame propagation of CH4/H2 and CH4/C3H8 was demonstrated to be principally an Arrhenius effect, predominantly through reduction of associated activation energy. Finally, plausible short-term variations in composition with hydrogen-enriched multi-component natural gas flames were investigated experimentally and numerically. At the leanest conditions, small variations in CH4:C3H8 content at a fixed H2 fraction resulted in discernible changes in stretch related behaviour, a reflection of the thermo-diffusive behaviour of each fuel's response

    Dissociative influence of H2O vapour/spray on lean blowoff and NOx reduction for heavily carbonaceous syngas swirling flames

    Get PDF
    Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O with heavily carbonaceous syngas mixtures. In this study, the potential benefits of these subtle changes in water loading and hence reaction pathways are explored in terms of delayed lean blowoff, and primary emission reduction in a premixed turbulent swirling flame (Ø = 0.6–0.8), scaled for practical relevance. Chemical kinetic models initially confirm that H2O has a substantial impact on the employed fuel behaviour; increasing flame speed by up to 60% across an experimental range representative of fluctuation in atmospheric humidity (∼1.8 mol%). OH* chemiluminescence and OH planar laser induced fluorescence (PLIF) were employed to analyse the changes in heat release structure resulting from the experimental addition of H2O vapour to the combustor. Equivalent concentrations of liquid H2O were introduced into the central recirculation zone of the premixed flame as an atomised spray, to investigate the influence of phase changes on the catalytic effect. Near the lean stability limit, H2O addition compresses heat release to shorten the elongated flame structure. Whereas with a stable and well-defined flame structure, the addition triggers a change in axial heat release location, causing the flame front to retract upstream toward the burner outlet. Higher quantities of two-phase flow were combined to explore the possibility of employing the spray as a stabilising mechanism, effectively dampening the observed influence of humidity. The chemical enhancement induced by the controlled supply was shown to reduce the lean blowoff stability limit, enabling an increase in additional air flow of almost 10%. However, the catalytic effect of H2O diminishes with excessive supply and thermal quenching prevails. There is a compound benefit of NOx reduction from the use of H2O as a flame stabiliser with the practically-relevant syngas: First NOx production decreases due to thermal effect of H2O addition, with potential for further reduction from the change in lean stability limit; leanest experimental concentrations reduced by up to a factor of four with two-phase flow at the highest rates of supply. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed in the laminar environment, is shown to translate into practical benefits in the challenging environment of turbulent, swirl-stabilised flames

    Exploring the equity of GP practice prescribing rates for selected coronary heart disease drugs: a multiple regression analysis with proxies of healthcare need

    Get PDF
    Background There is a small, but growing body of literature highlighting inequities in GP practice prescribing rates for many drug therapies. The aim of this paper is to further explore the equity of prescribing for five major CHD drug groups and to explain the amount of variation in GP practice prescribing rates that can be explained by a range of healthcare needs indicators (HCNIs). Methods The study involved a cross-sectional secondary analysis in four primary care trusts (PCTs 1–4) in the North West of England, including 132 GP practices. Prescribing rates (average daily quantities per registered patient aged over 35 years) and HCNIs were developed for all GP practices. Analysis was undertaken using multiple linear regression. Results Between 22–25% of the variation in prescribing rates for statins, beta-blockers and bendrofluazide was explained in the multiple regression models. Slightly more variation was explained for ACE inhibitors (31.6%) and considerably more for aspirin (51.2%). Prescribing rates were positively associated with CHD hospital diagnoses and procedures for all drug groups other than ACE inhibitors. The proportion of patients aged 55–74 years was positively related to all prescribing rates other than aspirin, where they were positively related to the proportion of patients aged >75 years. However, prescribing rates for statins and ACE inhibitors were negatively associated with the proportion of patients aged >75 years in addition to the proportion of patients from minority ethnic groups. Prescribing rates for aspirin, bendrofluazide and all CHD drugs combined were negatively associated with deprivation. Conclusion Although around 25–50% of the variation in prescribing rates was explained by HCNIs, this varied markedly between PCTs and drug groups. Prescribing rates were generally characterised by both positive and negative associations with HCNIs, suggesting possible inequities in prescribing rates on the basis of ethnicity, deprivation and the proportion of patients aged over 75 years (for statins and ACE inhibitors, but not for aspirin)

    How equitable are GP practice prescribing rates for statins?: an ecological study in four primary care trusts in North West England

    Get PDF
    BACKGROUND: There is a growing body of literature highlighting inequities in GP practice prescribing rates for a number of drug therapies. The small amount of research on statin prescribing has either focussed on variations rather than equity per se, been based on populations other than GP practices or has used cost-based prescribing rates. AIM: To explore the equity of GP practice prescribing rates for statins, using the theoretical framework of equity of treatment (also known as horizontal equity or comparative need). METHODS: The study involved a cross-sectional secondary analysis in four primary care trusts (PCTs 1–4) in the North West of England, including 132 GP practices. Prescribing rates and health care needs indicators (HCNIs) were developed for all GP practices. RESULTS: Scatter-plots revealed large differences between individual GP practices, both within and between PCTs, in terms of the relationship between statin prescribing and healthcare need. In addition, there were large differences between GP practices in terms of the relationship between actual and expected prescribing rates for statins. Multiple regression analyses explained almost 30% of the variation in prescribing rates in the combined dataset, 25% in PCT1, 31% in PCT3, 51% in PC4 and 58% in PCT2. There were positive associations with variables relating to CHD hospital diagnoses and procedures and negative associations with variables relating to ethnicity, material deprivation, the proportion of patients aged over 75 years and single-handed GP practices. CONCLUSION: Overall, this study found inequitable relationships between actual and expected prescribing rates, and possible inequities in statin prescribing rates on the basis of ethnicity, deprivation, single-handed practices and the proportion of patients aged over 75 years

    Cumulative Prognostic Score Predicting Mortality in Patients Older Than 80 Years Admitted to the ICU.

    Get PDF
    OBJECTIVES: To develop a scoring system model that predicts mortality within 30 days of admission of patients older than 80 years admitted to intensive care units (ICUs). DESIGN: Prospective cohort study. SETTING: A total of 306 ICUs from 24 European countries. PARTICIPANTS: Older adults admitted to European ICUs (N = 3730; median age = 84 years [interquartile range = 81-87 y]; 51.8% male). MEASUREMENTS: Overall, 24 variables available during ICU admission were included as potential predictive variables. Multivariable logistic regression was used to identify independent predictors of 30-day mortality. Model sensitivity, specificity, and accuracy were evaluated with receiver operating characteristic curves. RESULTS: The 30-day-mortality was 1562 (41.9%). In multivariable analysis, these variables were selected as independent predictors of mortality: age, sex, ICU admission diagnosis, Clinical Frailty Scale, Sequential Organ Failure Score, invasive mechanical ventilation, and renal replacement therapy. The discrimination, accuracy, and calibration of the model were good: the area under the curve for a score of 10 or higher was .80, and the Brier score was .18. At a cut point of 10 or higher (75% of all patients), the model predicts 30-day mortality in 91.1% of all patients who die. CONCLUSION: A predictive model of cumulative events predicts 30-day mortality in patients older than 80 years admitted to ICUs. Future studies should include other potential predictor variables including functional status, presence of advance care plans, and assessment of each patient's decision-making capacity
    • …
    corecore